Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gilles Gasser, Gaël Labat and Helen Stoeckli-Evans*

Institut de Chimie, Université de Neuchâtel, Av. de Bellevaux 51, CP 2, CH-2007 Neuchâtel, Switzerland

Correspondence e-mail:
helen.stoeckli-evans@unine.ch

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.015 \AA$
R factor $=0.068$
$w R$ factor $=0.185$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-chloro-bis[(2,2':6,2"-terpyridine- $\left.\boldsymbol{\kappa}^{3} N\right)$ copper(II)] diperchlorate: the triclinic polymorph

The title compound, $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, crystallized from water as the triclinic polymorph. There are two independent centrosymmetric binuclear dications, $\left[\mathrm{Cu}_{2}(\right.$ terpyridine) $\left.{ }_{2} \mathrm{Cl}_{2}\right]^{2+}$, and four perchlorate anions per unit cell. Each Cu atom has a distorted square-pyramidal geometry. In the crystal structure, the cations are bridged by the perchlorate anions via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, thereby forming a three-dimensional network.

Comment

On addition of NaClO_{4} to an aqueous solution of CuCl_{2} and terpyridine, pale blue needle-like crystals appeared after a few hours. Their structure (Fig. 1) was revealed to be the triclinic polymorph of the title compound, (I). There are two independent centrosymmetric binuclear dications per unit cell. Selected bond distances and angles are given in Table 1. The structure analysis of the monoclinic polymorph of (I), obtained from an acteonitrile solution, was recently reported by Valdés-Martínez et al. (2002). The overall structures are very similar, but the length of the apical $\mathrm{Cu}-\mathrm{Cl}$ bond is slightly different. The average distance in the triclinic polymorph is 2.747 (1) \AA, compared to 2.698 (2) \AA in the monoclinic polymorph. Both Cu atoms have a distorted squarepyramidal geometry, with τ values (Addison et al., 1984) of 0.31 and 0.32 for Cu 1 and Cu 2 , respectively. This is slightly more distorted than in the monoclinic polymorph, where the τ value is 0.27 .

(I)

The crystal packing of the triclinic polymorph of (I) is illustrated in Fig. 2. It can be seen that there are no $\pi-\pi$ interactions, as were found in the monoclinic polymorph. The cations are bridged by a number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (perchlorate) hydrogen bonds; see Table 2. In this way, the molecules are linked to form a three-dimensional network.

Received 23 December 2003
Accepted 7 January 2004
Online 30 January 2004

Figure 1
View of the triclinic polymorph of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The two symmetry-related perchlorate anions have been omitted for clarity.

Figure 2
The molecular packing of the triclinic polymorph of (I), viewed down the a axis. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds are shown as dashed lines. Details are given in Table 2.

Experimental

$\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(90.7 \mathrm{mg}, 0.532 \mathrm{mmol})$ and $2,2^{\prime}: 6,2^{\prime \prime}$-terpyridine (0.123 g , $0.517 \mathrm{mmol})$ were dissolved in water $(20 \mathrm{ml})$ and heated to 353 K for 1 h . The terpyridine (terpy) progressively dissolved giving a green solution. After hot filtration $\mathrm{NaClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~g}, 2.04 \mathrm{mmol})$ were added to the filtrate at room temperature. Pale-blue needle-like crystals appeared rapidly (more if the mother liquor was kept in the refrigerator). Crystals suitable for X-ray analysis were obtained by recrystallization from hot water. Yield: $93.9 \mathrm{mg}(42 \%)$. ESI MS m / z : 332 ($\left.[\mathrm{Cu}(\text { terpy }) \mathrm{Cl}]^{+}\right), 296$ ($\left.[\mathrm{Cu}(\text { terpy })]^{+}\right)$. IR (KBr disc, cm^{-1}): 3435 (m), 3080 (w), 2963 (w), 1630 (w), 1600 (m), 1578 (m), 1499 (w), 1475 (w), 1447 (m), 1408 (w), 1384 (w), 1329 (w), 1303 (w), 1290 (w), 1262 (m), 1185 (w), 1167 (w), $1099(s), 1083(s), 1050(m), 1020(s), 872(w)$, $800(m), 787(m), 732(w), 672(w), 649(w), 621(m), 515(m), 439(w)$, 409 (w). Analysis calculated for $\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{Cl}_{4} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{8}$ (\%): C 41.71, H 257, N 977; found (\%): C 41.52, H 254, N 9.69.

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{Cl}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$	$Z=2$
$M_{r}=863.42$	$D_{x}=1.796 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=6.9905(8) \AA$	Cell parameters from 6421
$b=9.8696(11) \AA$	\quad reflections
$c=23.782(2) \AA$	$\theta=2.2-25.8^{\circ}$
$\alpha=91.431(13)^{\circ}$	$\mu=1.73 \mathrm{~mm}^{-1}$
$\beta=93.524(13)^{\circ}$	$T=153(2) \mathrm{K}$
$\gamma=102.678(14)^{\circ}$	Needle, pale blue
$V=1596.6(3) \AA^{3}$	$0.50 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
φ oscillation scans
Absorption correction: refined from ΔF (DIFABS in PLATON; Spek, 1990)
$T_{\text {min }}=0.250, T_{\text {max }}=0.917$
12643 measured reflections

5819 independent reflections 2512 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.100$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 12$
$l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.185$
$S=0.97$
5819 reflections
451 parameters
Table 1
Selected geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2$	$1.932(8)$	$\mathrm{Cu} 2-\mathrm{N} 22$	$1.944(8)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$2.017(8)$	$\mathrm{Cu} 2-\mathrm{N} 21$	$2.018(8)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.033(8)$	$\mathrm{Cu} 2-\mathrm{N} 23$	$2.028(8)$
$\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$2.218(3)$	$\mathrm{Cu} 2-\mathrm{Cl} 2$	$2.226(3)$
$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.751(3)$	$\mathrm{Cu} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	$2.743(3)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 3$	$81.3(4)$	$\mathrm{N} 22-\mathrm{Cu} 2-\mathrm{N} 21$	$79.3(3)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$79.3(3)$	$\mathrm{N} 22-\mathrm{Cu} 2-\mathrm{N} 23$	$81.2(3)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$159.9(3)$	$\mathrm{N} 21-\mathrm{Cu} 2-\mathrm{N} 23$	$159.6(3)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$178.5(2)$	$\mathrm{N} 22-\mathrm{Cu} 2-\mathrm{Cl} 2$	$178.8(2)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$98.9(3)$	$\mathrm{N} 21-\mathrm{Cu} 2-\mathrm{Cl} 2$	$100.5(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$100.3(2)$	$\mathrm{N} 23-\mathrm{Cu} 2-\mathrm{Cl} 2$	$98.9(2)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{Cl} 1$	$92.9(2)$	$\mathrm{N} 22-\mathrm{Cu} 2-\mathrm{C} 2^{\mathrm{ii}}$	$92.6(2)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{Cl} 1$	$87.7(2)$	$\mathrm{N} 21-\mathrm{Cu} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	$97.1(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	$98.9(2)$	$\mathrm{N} 23-\mathrm{Cu} 2-\mathrm{Cl} 2^{\mathrm{ii}}$	$89.9(2)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 1$	$88.55(9)$	$\mathrm{Cl} 2-\mathrm{Cu} 2-\mathrm{Cl} 2^{\mathrm{i}}$	$88.56(9)$
$\mathrm{Cu} 1^{\mathrm{i}}-\mathrm{Cl} 1-\mathrm{Cu} 1$	$91.45(9)$	$\mathrm{Cu} 2-\mathrm{Cl} 2-\mathrm{Cu} 2^{\mathrm{ii}}$	$91.44(9)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$0.8(12)$	$\mathrm{N} 21-\mathrm{C} 25-\mathrm{C} 26-\mathrm{N} 22$	$-2.5(12)$
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 3$	$-4.2(12)$	$\mathrm{N} 22-\mathrm{C} 30-\mathrm{C} 31-\mathrm{N} 23$	$7.9(12)$

Symmetry codes: (i) $2-x, 2-y, 1-z$; (ii) $1-x, 1-y,-z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 22^{\text {iii }}$	0.95	2.47	3.316 (14)	149
C9-H9A . ${ }^{\text {O }} 11^{\text {iv }}$	0.95	2.37	3.309 (14)	172
$\mathrm{C} 12-\mathrm{H} 12 A \cdots \mathrm{O} 12{ }^{\text {iv }}$	0.95	2.42	3.172 (14)	137
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O} 12{ }^{\text {v }}$	0.95	2.37	3.160 (15)	140
$\mathrm{C} 29-\mathrm{H} 29 A \cdots \mathrm{O} 22^{\text {iv }}$	0.95	2.48	3.421 (13)	170
C32-H32A . ${ }^{\text {O } 212^{\text {iv }}}$	0.95	2.47	3.254 (13)	140
$\mathrm{C} 33-\mathrm{H} 33 A \cdots \mathrm{O} 21^{\text {vi }}$	0.95	2.46	3.194 (14)	134

Symmetry codes: (iii) $1+x, 1+y, z$; (iv) $x-1, y, z$; (v) $1-x, 1-y, 1-z$; (vi) $-x,-y,-z$.

All the H atoms, initially located in difference Fourier maps, were included in calculated positions and treated as riding atoms using SHELXL97 (Sheldrick, 1997) default parameters. The C-H distances were fixed at $0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1990); software used to prepare material for publication: SHELXL97.

Financial support from the Swiss National Science Foundation is gratefully acknowledged.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschor. G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2000). IPDS Software, Stoe \& Cie GmbH, Darmstadt, Germany. Valdés-Martínez. J., Salazar-Mendoza, D. \& Toscano, R. A. (2002). Acta Cryst. E58, m712-m714.

